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Abstract

A continuum model for vegetation patterns in water limited systems is presented.

The model involves two variables, the vegetation biomass density and the soil water

density, and takes into account positive feedback relations between the two. The

model predicts transitions from bare soil at low precipitation to homogeneous veg-

etation at high precipitation through intermediate states of spot, stripe and gap

patterns. It also predicts the appearance of ring-like shapes as transient forms to-

ward asymptotic stripes. All these patterns have been identified in observations

made on two types of perennial grasses in the Northern Negev. Another prediction

of the model is the existence of wide precipitation ranges where different stable

states coexist, e.g. a bare soil state and a spot pattern, a spot pattern and a stripe

pattern, and so on. This result suggests the interpretation of desertification followed
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by recovery as an hysteresis loop and sheds light on the irreversibility of desertifi-

cation.

Key words: Vegetation patterns, mathematical modelling, positive feedback, state

coexistence, hysteresis, desertification.

1 Introduction

Geophysical patterns range over a wide range of scales, from the size of a small

heaps of desert sand to the size of large scale jets and eddies in the atmosphere.

Sometimes scale invariance over a few orders of magnitude is observed, such as

in river networks, and coherent structures in atmospheric and oceanic flows.

More often a characteristic length scale is preferred as in the case of convective

cells [1], river bed ripples [2], aeolian sand ripples [3], stone stripes [4], and

banded vegetation [5].

Vegetation bands tend to develop on gentle hill-slopes in arid and semi-arid re-

gions. They have been observed in Africa, Australia, Asia and South America

[5]. The bands may consist of trees, shrubs and perennial grass, or combina-

tions thereof. The characteristic length scale (width of band and inter-band

spacing) is of the order of 10 to 102 m. The bands are most often oriented per-

pendicular to the hill slope but the orientation may be affected by a dominant

wind direction. The phenomenon has attracted considerable interest in the
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past few years and motivated both field studies [6] and mathematical mod-

elling [7–14]. The models reproduced vegetation bands as well as isotropic

patterns in plain areas such as spots and labyrinths. The studies of these

models suggest that vegetation pattern formation is a symmetry breaking phe-

nomenon, occurring even if the system and the forces it is subjected to are

completely uniform.

The symmetry breaking of vegetation patterns, manifested by the appearance

of a particular length scale, has been attributed to a finite wavenumber in-

stability of a homogeneous state (bare soil or uniform vegetation) [15,1]. The

mechanism of this instability is a positive feedback between biomass (amount

of plant matter) and soil water [16]. The more soil water the faster the plant

growth, and the larger the plant the more soil water available to it. Two

main processes are responsible for this positive feedback. The first one is the

drainage of surface water into vegetated areas, where physical and biological

soil crusts are absent and the infiltration of surface water into the soil is higher

[17]. The second feedback process is water uptake by the plant’s roots which

is higher with larger plants having longer roots.

In this paper we present a model that was briefly introduced in Ref. [18].

We describe the states along a rainfall gradient that the model predicts and

show the existence of rainfall ranges where two or even three stable states

coexist. The paper supplements Ref. [18] with additional analyses, simulations,

observations and discussions.

We proceed in Section 2 to the presentation of the model equations. In Section

3 we study uniform solutions of the equations and their stability. In Section 4

we present numerical simulations of the model, and in Section 5 we compare
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simulations with field observations. We conclude with a discussion in Section

6.

2 The model equations

The system we consider is described by two dynamical variables, the plant

biomass density, N(x, t), and the water density, W (x, t), in units of Kg/m2.

The biomass variable represents the amount of plant matter while the water

variable represents the total water density in the top soil layer, including

the water taken up by the roots. The evolution in time of these variables is

described by the following model equations:

∂N

∂t
=

GW

1 + SW
N − CN2 −MN + Dn∇2N (1)

∂W

∂t
= P − I(1−RN)W − FW 2N + Dw∇2(W −BN) . (2)

The term GW
1+SW

N in Eq. (1) describes plant growth at a constant rate, G/S,

for saturated soil, and at a rate that grows linearly with W for dry soil. The

term −MN accounts for mortality and grazing, and the quadratic term −CN2

represents saturation due to limited nutrients. The spread of plants, both by

clonal reproduction and by seed dispersal is modelled by the diffusion term

Dn∇2N [15].

Eq. (2) contains a source term, P , representing precipitation, and a loss term

−I(1−RN)W . In the absence of plants, the loss rate of water due to factors

such as evaporation and drainage can be modelled by a term −IW . Vegetation

coverage reduces this loss through an increase in local water infiltration and

reduced evaporation due to shading. Local uptake of water by plants (mostly
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transpiration) is modelled by the term −FW 2N (this form was motivated by

transpiration curves appearing in Ref. [19]). The transport of water in the soil

is modelled by Darcy’s law which states that the water flux J is proportional

to the gradient of the water matric potential φ, J ∝ −∇φ, [19]. To account for

the water uptake by the roots we assume the form φ = φ0−BN , where φ0 is the

matric potential for bare soil. The root system is regarded here as a transport

mean for the plant to collect water from its surrounding. In the numerical

simulations we used the simple form φ0 = W (assuming constant hydraulic

diffusivity. See Ref. [19]). The temporal change of W due to transport,−∇·J ∝
∇2φ, gives the Laplacian term in Eq. (2). The water dependent, plant-growth

term in Eq. (1) and the terms containing the parameters R and B in Eq. (2)

describe positive feedback effects of water and biomass.

Equations (1) and (2) can be brought to the non-dimensional forms

∂n

∂t
=

γw

1 + σw
n− n2 − µn +∇2n , (3)

∂w

∂t
= p− (1− ρn)w − w2n + δ∇2(w − βn) , (4)

by introducing non-dimensional variables and parameters as follows: n =

(C/I)N , w = (F/C)W , t̃ = It, x̃ = (I/
√

DN)x, γ = (C/IF )G, σ = (C/F )S,

µ = I−1M , p = (F/IC)P , ρ = (I/C)R, δ = DW /DN , β = (IF/C2)B. The

tilde signs of the new time and space variables were dropped from Eqs. (3)

and (4).

Realistic parameter values can be determined following Refs. [19,20]. In the

simulations we have chosen G = 0.04 mm−1 yr−1, S = 0.01 mm−1, C = 4

m2/(kg yr), M = 0.8 yr−1, I = 4 yr−1, R = 1.5 mm2 kg−1, F = 0.025 m4/(kg2

yr), Dn = 5 · 10−4 m2 yr−1, Dw = 5 · 10−2 m2 yr−1, and β = IFB/C2 = 3. For
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the parameter p a range of values will be considered.

3 Uniform solutions and their stability

The model equations (3) and (4) have two uniform stationary solutions: (i)

B: n = 0, w = p describing a bare soil, and V : n = n0, w = w0 describing a

uniform vegetation state (the values of n0 and w0 will be evaluated numeri-

cally, the explicit analytical forms are too complicated to display). It is first

instructive to consider the stability of these states to uniform perturbations.

At low precipitation p the bare soil state is stable, but as p is increased it

loses stability to the uniform vegetation state. The nature of the instability

depends on the parameter ρ as shown in Fig. 1. This parameter controls the

positive feedback effect between biomass and water associated with water loss

reduction; the higher the biomass the smaller the loss. For ρ < ρc, where ρc

is evaluated numerically, the positive feedback effect is small and the bare

soil state loses stability to uniform vegetation in a supercritical bifurcation at

p = pc = µ/(γ−µσ). For ρ > ρc the instability becomes subcritical; a range of

p exists where both the bare soil and the uniform vegetation states are stable.

The coexistence of the two states results from the big reduction in the water

loss as the vegetation grows [21].

We now consider the stability of the two uniform states to nonuniform per-

turbations. The bare state is found to be stable to nonuniform perturbations

and the first instability it encounters is the uniform (or zero wavenumber)

instability discussed above. Fig. 2 shows growth rate curves below the insta-

bility (p < pc) at the instability (p = pc) and above it (p > pc). The uniform

vegetation state, however, may undergo a finite wavenumber instability as p
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increases from low values beyond p1 or decreases from high values below p2.

Fig. 3 shows growth rate curves for the instability at p = p2. The physical

picture of this instability is the positive feedback due to water uptake by the

plant roots. A plant that has slightly longer roots then a nearby plant take up

more water from the soil and leave less water for its neighbor. As a result it

grows faster, takes up even more water and inhibits the growth of the neighbor

plants.

4 Nonuniform solutions of the model and their significance

The two uniform states, B and V are stable at low and high p (precipitation)

values, respectively. At intermediate p values stable nonuniform solutions of

Eqs. (3) and (4) are numerically found. At relatively low p values, nonuniform

solutions representing spot patterns appear. At higher p values stable solu-

tions describing stripes or labyrinths appear. At yet higher p values solutions

representing gaps in a uniform coverage are found. The spot, stripe and gap

patterns reflect optimal self-organization of the system with respect to water

resources. Spot patterns are the preferred patterns at low p since water uptake

from adjacent bare areas can be made in all directions. Stripes, which have

only two directions to extract water from, need higher precipitation values.

Spot, stripe and gap patterns have also been found in Refs. [12–14].

Fig. 4 summarizes all the stable states of the model along the rainfall gradient,

0 < P < 480mm (0 < p < 0.6), by displaying the spatial average 〈n〉, of the

biomass density as a function of p. The figure was created by scanning p

upward and downward starting the simulation at each value of p with the

pattern produced at the previous p value. In this way ranges of p where two or
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even three stable solutions were identified. Increasing p from very low values we

found the bare soil state to remain stable all the way till p = pc. But starting

with a spot pattern at p > pc and decreasing p, the transition to the bare soil

state occurred at p0 < pc, implying a coexistence range, p0 < p < pc, where

both bare soil and spots are stable states. Similarly, a coexistence range of

uniform vegetation and gap patterns was found at high p values. Pattern states

may not only coexist with uniform states but also with other pattern states. A

spot pattern may coexist with a labyrinthine pattern and the latter with a gap

pattern. A small p range was even found where all three patterns coexist. Figs.

5 shows coexistence of spots and labyrinths at the same precipitation value.

In Fig. 5(a) initial conditions were chosen such that one half of the system

converges to a spot pattern and the other half to a stripe pattern. In Fig.

5(b) the intial condition is the unstable uniform vegetation state with random

perturbations imposed on it. In this case the system converges to a mixture

of spots and stripes. We also found a range of p values were all the three

patterns coexist as stable states. In the field this coexistence of stable states

can be attributed to the positive feedback effect associated with the roots.

As an example, under relatively dry conditions a small plant may not survive

because of its short roots and the incapability of the plant to collect water

from its surrounding. However, under the same environmental conditions, a

big plant with a well developed root system may survive.

The three pattern states, spots, labyrinths and gaps, describe asymptotic pat-

terns, that is, patterns the system converges to at long times. Different initial

states may lead to the same type of asymptotic pattern but the transient

behaviors will obviously be different. Figs. 6 show the development of a spot

pattern from (a) an initial uniform vegetation state and (b) an initial state con-
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sisting of a few spots. Fig. 7 shows the development of a stripe (labyrinthine)

pattern, at higher precipitation value, from similar initial conditions. The de-

velopments of spot and stripe patterns from isolated initial spots involve tran-

sient rings. The appearance of rings can be interpreted as follows: as an initial

spot expands beyond a characteristic size the plants at the center of the spot

can no longer take up water (using their roots) from the patch surrounding

and die out, thus forming a ring.

The coexistence of stable vegetation states sheds new light on desertification

phenomena [18]. Desertification is a long lasting or irreversible decrease in bio-

logical productivity caused by climatic changes (such as drought) or by human

activities (such as over-grazing or clear-cutting) [22]. In terms of the model,

desertification caused by a prolonged drought can be understood as follows.

Consider the precipitation range p0 < p < pc where a bare soil coexists with a

spot pattern. A soil covered with a spot pattern in this range of precipitation

will dry out when subjected to a prolonged drought that reduces p below p0.

The resumption of rainfall to the original precipitation level, however, will not

be followed by a recovery of the vegetation because the coexisting bare soil

continues to be stable. A particulary rainy period is needed for the vegetation

to spontaneously recover (and complete the hysteresis loop). Desertification

due to human activities, such as grazing, can also be related to coexistence of

stable states. From the point of view of dynamical systems theory, an unsta-

ble solution should exist between the two stable ones. This solution or state

introduces a threshold for the flow in phase space. Sub-threshold perturba-

tions (e.g. grazing) of a spot pattern in the range p0 < p < pc will decay out

and the spot pattern will recover. However, super-threshold perturbations (i.e.

over-grazing) will grow and drive the system to the coexisting stable bare-soil
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state.

Coexistence of states not only implies vulnerability to desertification, but also

the possible recovery of desertified regions with appropriate human interven-

tion. It is therefore significant to know whether a given area represents a

system with a single stable state or with coexistence of two or more stable

states. To highlight this geographical property we suggested in Ref. [18] a new

classification of aridity based on the inherent vegetation states of the system.

According to this classification a hyper-arid region is characterized by a single

stable state, the bare soil state. An arid region is characterized by coexistence

of a stable bare soil and a stable pattern state (spots), and so on (see Fig.

4). Thus, a region with patches of vegetation which is classified as arid, is

vulnerable to desertification, and a bare-soil region, also classified as arid, is

recoverable. A bare-soil region classified as hyper-arid is not recoverable and

attempts to recover vegetation will fail.

5 Model simulations vs. field observations

Most observations of vegetation patterns focused on vegetation bands that

develop on gentle slopes. Such patterns are reproduced by models that in-

clude the effect of runoff water [7,18,14]. Here we present observations of two

perennial grasses, Paspalum vaginatum and Poa bulbosa, made in flat areas in

the Northern Negev where average annual rainfall is about 200mm.

Fig. 8a shows a labyrinth-like pattern of Paspalum vaginatum. Closeups at

different locations of the same area are shown in Figs. 8b,c,d. They reveal the

three pattern states, spots, stripes and gaps that the model predict (compare
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with the insets in Fig. 4). In this case all three patterns where observed in

the same area on the same day. Figs. 9a,b show scattered spots and ring-

like shapes of Poa bulbosa. Scattered spots and rings appear in the model

simulations as transients as Figs. 6 show. The simulations were carried out

with constant values of the precipitation parameter p, while in nature the

rainfall is time dependent. We expect dry periods that follow rainy ones to

extend the durations of these transients.

6 Conclusion

The model presented in this paper takes into account the positive feedback

between biomass and water due to water up-take by the plants’ roots, but

does not include the positive feedback associated with water drainage into

vegetation patches. The latter feedback effect has been included in a recent

study by Rietkerk et al. [14] who split the water variable into two independent

variables; soil water and surface water. This model does not take into account

the roots effects but produces the same sequence of states; bare soil, spots,

stripes, gaps and uniform vegetation. This sequence has also been found in a

single-variable model (biomass only) that takes into account resource compe-

tition effects [11–13].

The conclusion we may draw from these studies is that the sequence of states

along the rainfall gradient, bare soil, spots, stripes, gaps and uniform vegeta-

tion, is likely to be a robust feature of planar water limited systems and that

the mechanism behind it is a positive feedback between biomass and water.

The particular positive feedback mechanism (water up-take by roots or water

drainage) appears to be of secondary importance as far as the sequence of
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states is concerned.

In general, both mechanisms of positive feedback are expected to be at work.

The relative importance of the two is expected to depend on the water infil-

tration properties of the soil. High infiltration will create a very thin layer of

surface water, if at all, and drainage effects may be negligible. On the other

hand, low infiltration will produce abundant surface water and drainage effects

are expected to be dominant.

The five states, bare soil, spots, stripes, gaps and uniform vegetation, are

asymptotic states, describing the behavior of the system at long times. The

asymptotic spot and gap states consist of hexagonal arrays (0 and π hexagons

[11–13]). In practice the system may assume many more states. The coex-

istence of two or more asymptotic states allows for a wide variety of mixed

states, where domains of one state are embedded in areas occupied by the

other state. In addition, the system may be caught in long transients as en-

vironmental parameters vary on time scales similar to the relaxation times

associated with the asymptotic states. Rainfall variations, for example, may

increase the life time of rings as they evolve toward stripe patterns.
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Figure Captions

Figure 1: A bifurcation diagram for uniform states, showing the instability

of the bare-soil state as the precipitation p exceeds a critical value pc. The ver-

tical axis, n, represents here the biomass of uniform states. Solid lines denote

states which are stable to uniform perturbations. Dashed lines denote unsta-

ble states. Beyond the instability, the bare-soil state evolves toward a uniform

vegetation state. The instability is supercritical for ρ < ρc and subcritical for

ρ > ρc, where ρc = 3.8418 for the parameters used in this study (see Sec. 2).

Figure 2: Growth rate curves, σ = σ(k), for perturbations with wavenumbers

k around the uniform bare-soil state for three precipitation values, below the

instability of the bare-soil state (p < pc), at the instability (p = pc) and above

it (p > pc). The fastest growing mode at p > pc is characterized by a zero

wavenumber and the growth is monotonic. The instability leads to a uniform

vegetation state.

Figure 3: Growth rate curves, σ = σ(k), for perturbations with wavenumbers

k around the uniform vegetation state for three precipitation values, below the

instability of uniform vegetation (p > p2), at the instability (p = p2) and be-

yond it (p < p2). The fastest growing mode at p < p2 is characterized by a

finite wavenumber kc and the growth is monotonic. The instability leads to a

stationary gap pattern.

Figure 4: Spatially averaged biomass 〈n〉 vs. precipitation p, obtained by sim-

ulating Eqs. (3) and (4). Linearly stable (unstable) solutions are represented

by solid (dashed) lines. The line B represents the bare state 〈n〉 = 0. The

curved line V designates the uniform vegetation state. The insets show typical

patterns associated with the different nonuniform solution branches denoted

by the colored lines. Parameter values are as specified in Sec. 2.
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Figure 5: Patterns involving spots and stripes in a parameter range where

both spot and stripe patterns are stable states of the system. (a) Coexistence

of spot and stripe in spatially separated domains. (b) A mixed state of spots

and stripes. The initial conditions in (a) where chosen so that the upper part

converges to stripes and the lower part to spots. The interface between the

two patterns appears to be stationary. In (b) the initial conditions consist of

random perturbations about the unstable uniform vegetation state. Parame-

ter values are as specified in Sec. 2.

Figure 6: The development of spot patterns from two different initial condi-

tions: (a) random perturbations of the unstable uniform vegetation state, and

(b) three scattered spots. Isolated spots evolve first into rings which subse-

quently break into spots. Parameter values are as specified in Sec. 2.

Figure 7: The development of stripe or labyrinthine patterns from two dif-

ferent initial conditions: (a) random perturbations of the unstable uniform

vegetation state, and (b) three scattered spots. The spots evolve first into

rings before additional stripes appear. Parameter values are as specified in

Sec. 2.

Figure 8: Patterns of Paspalum vaginatum observed in the Northern Negev

(200mm mean annual rainfall): a labyrinth-like pattern (a) and closeups show-

ing spots (b), stripes (c) and gaps (d). The typical distance between spots and

stripes is about 0.1m.

Figure 9: Patterns of Poa bulbosa observed in the Northern Negev (200mm

mean annual rainfall): scattered spots (a) and rings (b). Spot and ring diam-

eters are in the range of 0.5-0.15 m.

17



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

p

n ρ<ρ
c

ρ=ρ
c

ρ>ρ
c

p
c

Fig. 1. A bifurcation diagram for uniform states, showing the instability of the

bare-soil state as the precipitation p exceeds a critical value pc. The vertical axis,

n, represents here the biomass of uniform states. Solid lines denote states which

are stable to uniform perturbations. Dashed lines denote unstable states. Beyond

the instability, the bare-soil state evolves toward a uniform vegetation state. The

instability is supercritical for ρ < ρc and subcritical for ρ > ρc, where ρc = 3.8418

for the parameters used in this study (see Sec. 2).
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Fig. 2. Growth rate curves, σ = σ(k), for perturbations with wavenumbers k around

the uniform bare-soil state for three precipitation values, below the instability of the

bare-soil state (p < pc), at the instability (p = pc) and above it (p > pc). The fastest

growing mode at p > pc is characterized by a zero wavenumber and the growth is

monotonic. The instability leads to a uniform vegetation state.
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Fig. 3. Growth rate curves, σ = σ(k), for perturbations with wavenumbers k around

the uniform vegetation state for three precipitation values, below the instability of

uniform vegetation (p > p2), at the instability (p = p2) and beyond it (p < p2). The

fastest growing mode at p < p2 is characterized by a finite wavenumber kc and the

growth is monotonic. The instability leads to a stationary gap pattern.
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Fig. 4. Spatially averaged biomass 〈n〉 vs. precipitation p, obtained by simulat-

ing Eqs. (3) and (4). Linearly stable (unstable) solutions are represented by solid

(dashed) lines. The line B represents the bare state 〈n〉 = 0. The curved line V
designates the uniform vegetation state. The insets show typical patterns associ-

ated with the different nonuniform solution branches denoted by the colored lines.

Parameter values are as specified in Sec. 2.
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Fig. 5. Patterns involving spots and stripes in a parameter range where both spot

and stripe patterns are stable states of the system. (a) Coexistence of spot and

stripe in spatially separated domains. (b) A mixed state of spots and stripes. The

initial conditions in (a) where chosen so that the upper part converges to stripes

and the lower part to spots. The interface between the two patterns appears to be

stationary. In (b) the initial conditions consist of random perturbations about the

unstable uniform vegetation state. Parameter values are as specified in Sec. 2.
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Fig. 6. The development of spot patterns from two different initial conditions: (a)

random perturbations of the unstable uniform vegetation state, and (b) three scat-

tered spots. Isolated spots evolve first into rings which subsequently break into

spots. Parameter values are as specified in Sec. 2.
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Fig. 7. The development of stripe or labyrinthine patterns from two different initial

conditions: (a) random perturbations of the unstable uniform vegetation state, and

(b) three scattered spots. The spots evolve first into rings before additional stripes

appear. Parameter values are as specified in Sec. 2.
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Fig. 8. Patterns of Paspalum vaginatum observed in the Northern Negev (200mm

mean annual rainfall): a labyrinth-like pattern (a) and closeups showing spots (b),

stripes (c) and gaps (d). The typical distance between spots and stripes is about

0.1m.
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Fig. 9. Patterns of Poa bulbosa observed in the Northern Negev (200mm mean

annual rainfall): scattered spots (a) and rings (b). Spot and ring diameters are in

the range of 0.5-0.15 m.
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